ISESA

1st International Symposium on Energy System Analysis

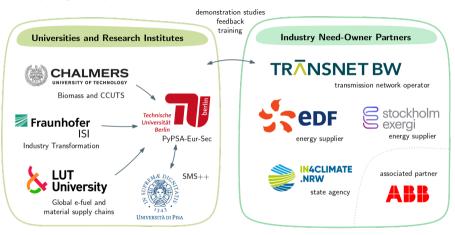
Resilient strategies for the European energy system A case study on 2030 EU policy targets

Bobby Xiong

xiong@tu-berlin.de

Technische Universität Berlin, Germany

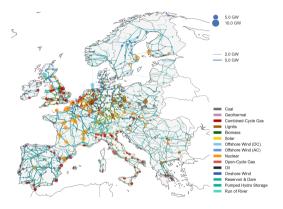
November 11, 2024



on the basis of a decision by the German Bundesta

Appendix

RESILIENT project partners



Funded via CETPartnership 2022 Call – BMWK for all German partners.

PyPSA-Eur: An open-source, sector-coupled model for Europe

- Spatially and temporally highly resolved linear optimisation model that covers the European continent,
- Built on top of the open-source toolbox PyPSA,
- Includes stock of existing power plants, renewable potentials, availability time series,
- Covers the electricity high-voltage grid from AC 220 kV to 750 kV (UA) and DC 150 kV upwards, option to include planned transmission projects (TYNDP and German NEP),
- Maintained by the Department of Digital Transformation in Energy Systems at TU Berlin.

Appendix

Selection of planned model developments

Computational methods for uncertainties

- decomposition techniques
- large-scale stochastic optimisation
- test robustness of system
- using SMS++ framework

Carbon management and biomass usage

- **CO**₂ network
- CO₂ sequestration potentials
- circular carbon economy and recycling
- biomass usage options

Industry transformation (FORECAST)

- fuel and process switching
- industry relocation
- carbon sources and feedstocks
- data on stock & investment cycles
- new technologies (oxyfuel cement, etc.)

Global green fuel and material markets

- imports of green energy and materials
- effects on European infrastructure
- restructuring of value chains
- risks (geopolitical, technological, etc.)

Case study: Motivation and research questions

The EU has set ambitious targets for 2030, including the electricity, hydrogen and CO₂ infrastructure sector.

55 % emission reduction

Fit for 55

- Translating to an emission allowance of ca. 2 bn. t CO₂ p.a. in 2030
- Covering the electricity, heat, industry, transport, buildings and agriculture sectors

10 Mt p.a. green H₂ production

REPowerEU

- Accelerating the transition away from fossil fuels (esp. Russian gas), enhancing energy security through renewables
- Aligns with European Green Deal and targets scaling up renewable H₂ in hard-to-electrify-sectors

50 Mt p.a. CO₂ sequestration

- Net-Zero Industry Act
- Essential component in helping industries to reduce their net emissions
- Provides means to capture unavoidable emissions from hard-to-abate sectors like cement, steel, chemicals, etc.

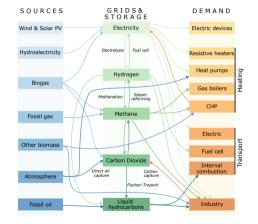
Appendix

Case study: Motivation and research questions

What are PCI-PMI projects?

- Projects of Common Interest (PCIs) are key cross-border infrastructure projects that link the energy systems of EU countries
- Projects of Mutual Interest (PMIs) include cooperations with countries outside the EU
- Intend "to help the EU achieve its energy policy and climate objectives: affordable, secure and sustainable energy for all citizens and the long-term decarbonisation of the economy in accordance with the Paris Agreement"
- "Potential overall benefits of the project must outweigh its costs"
- Given their lighthouse character, these projects are highly likely to be implemented.
- Large infrastructure projects (incl. PCI-PMI) are however commonly facing delays due to permitting, procurement bottlenecks, etc.

Project map



- 1 At what cost do we stick to the targets? How does a delay of PCI-PMI projects affect the system?
- 2 What is the impact of missing the EU 2030 policy targets for CO₂ sequestration and H₂ production?

Case study: Model setup

- Including sectors power, heat, transport, industry, feedstock and agriculture
- Minimising total system costs (investment and operation) for the target year 2030
- Co-optimising generation, transmission, storage, and power-to-X conversion
- Resolving 34 countries to 90 regions at 3-hourly temporal resolution
- Implementing PCI-PMI HVAC, HVDC, hydrogen and carbon infrastructure projects as well as key policy targets:
 - 55 % emission reduction (Fit for 55)
 - 10 Mt p.a. production of hydrogen (REPowerEU)
 - 50 Mt p.a. of CO₂ sequestration (Net-Zero Industry Act)

Case study: Scenario setup

Base

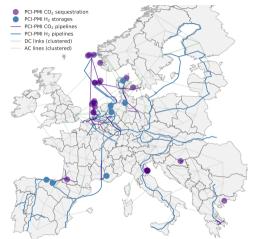
(All targets)

- Including PCI-PMI HVAC, HVDC, H₂ and CO₂ infrastructure projects with a planned commissioning date by 2030
- Including exogenous CO₂ sequestration and H₂ storage sites
- Endogeneous expansion of CO₂ pipelines and national H₂ pipelines
- Endogeneous expansion of H₂ storage sites
- 55 % emission reduction target
- 10 Mt p.a. H₂ production target
- 50 Mt p.a. CO₂ sequestration target

Scenario A. PCI-PMI delay (All targets)

- Delay of all PCI-PMI projects, no H₂ and CO₂ pipelines will be ready by 2030
- Endogeneous expansion of H₂ storage sites and CO₂ sequestration sites – according to technical sequestration potential (Hofmann et al., 2024)
- 55 % emission reduction target
- 10 Mt p.a. H₂ production target
- 50 Mt p.a. CO₂ sequestration target

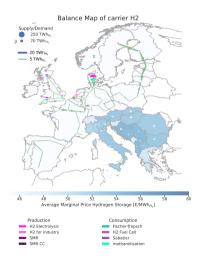
Scenario B. PCI-PMI delay (Emission target only)

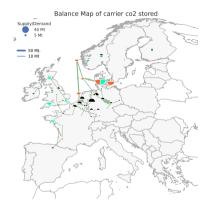

- Delay of all PCI-PMI projects, no H₂ and CO₂ pipelines will be ready by 2030
- Dropping H₂ production and CO₂ sequestration targets
- Endogeneous expansion of H₂ storage sites and CO₂ sequestration sites – according to technical sequestration potential (Hofmann et al., 2024)
- 55 % emission reduction target

Appendix

Case study: Base – Modelled PCI-PMI H₂ and CO₂ infrastructure

- Base scenario incorporates PCI-PMI projects for H₂ and CO₂ infrastructure, including pipelines, storages (H₂) and sequestration sites (CO₂), as well as new/upgraded high-voltage AC and high-voltage DC lines commissioned by 2030
- Total CO₂ sequestration capacity sums up to 75 Mt p.a., mostly located in the North Sea
- Total H₂ storage capacity sums up to 977 GWh_{H₂}

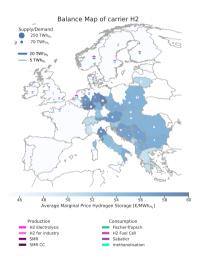


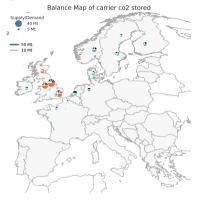


9 @

First results 2030

First results: Base (All targets)

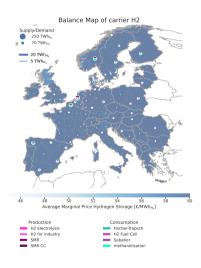


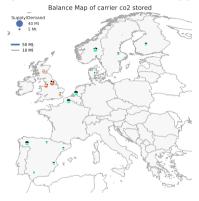


Source: Own illustration.

10 @

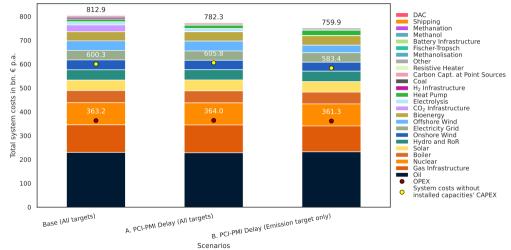
First results: Scenario A. PCI-PMI delay (All targets)





11 @

First results: Scenario B. PCI-PMI delay (Emission target only)



First results: Total system costs

Appendix

Case study: First takeaways for modelling year 2030

- 1 Reaching the EU's 2030 H₂ production and CO₂ sequestration targets translates into around 20 bn. € p.a. in total system costs for all included sectors, with or without PCI-PMI H₂ and CO₂ infrastructure projects.
- 2 By omitting a H₂ target, almost no electrolysers are installed. Around 8 Mt of H₂ are still produced to cover industrial H₂ and methanol (primarily shipping) demand. Instead of through electrolysis, this demand is met by decentral steam methane reforming (SMR).
- 3 Setting a policy target may however be essential to kick-start the H₂ economy. H₂ is then primarily created through electrolysis and used as a precursor for methanolisation and to meet industrial demand.
- 4 Without specifying a CO₂ sequestration target, the system still captures and sequesters around 21 Mt of CO₂ p.a. (primarily from process emissions).
- 5 While all three EU policy targets for 2030 can still be achieved without PCI-PMI infrastructure, they bring additional benefits:
 - PCI-PMI H₂ pipelines help distribute more affordable green H₂ from northern and south-western Europe to high-demand regions central Europe
 - PCI-PMI CO₂ pipelines connect industrial sites and their process emissions to major offshore sequestration sites in the North Sea (DK, NO, NL).

Outlook

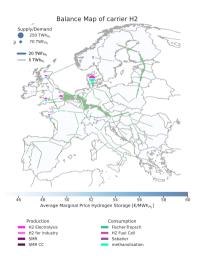
- Including all relevant PCI-PMI projects, i.e. hybrid offshore interconnectors (energy islands), electricity storages, CO₂ shipping routes
- Looking at the long-term value of PCI-PMI projects in a sector-coupled European energy system through modelling pathways towards 2040 and 2050
- Incorporating technology-specific build-out rate limits for earlier target years, e.g. for electrolysis
- Assessing the impact of sector-specific PCI-PMI project delays

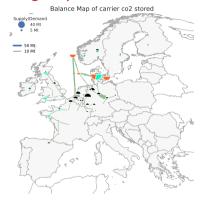
Thank you.

 \hookrightarrow github.com/pypsa/pypsa-eur

Department of Digital Transformation in Energy Systems (ENSYS)

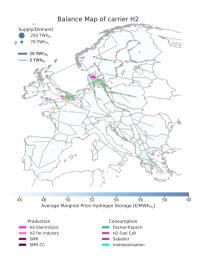
 $\begin{array}{l} \textbf{Bobby Xiong} \\ \hookrightarrow xiong@tu-berlin.de \\ \hookrightarrow github.com/bobbyxng \end{array}$

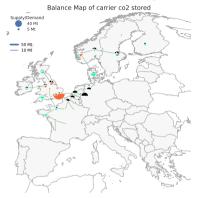




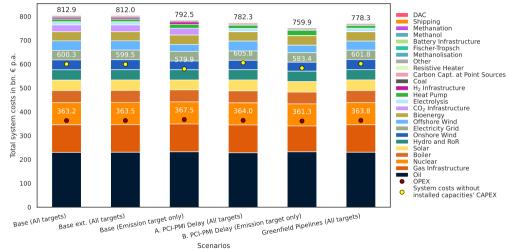
17 @@

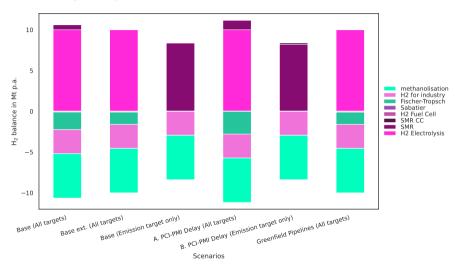
Case study: Sensitivity – Base ext. (All targets)



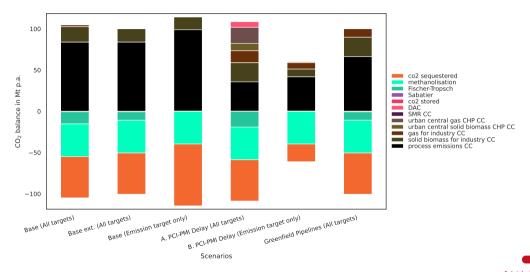


Case study: Sensitivity – Greenfield Pipelines (All targets)



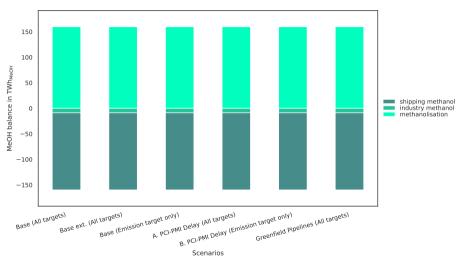


First results: Total system costs

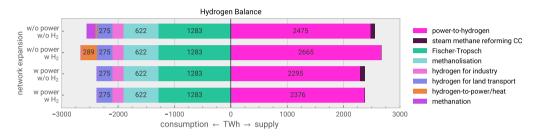


First results: Hydrogen balance

First results: Carbon balance

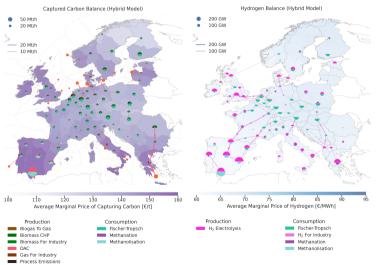


Universitä


Berlin

First results: Methanol balance

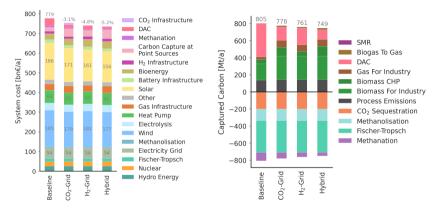
Why H₂? Most H₂ is used for derivative fuels and chemicals!


Mostly green electrolytic hydrogen supply. Few direct uses of hydrogen in the energy system, but it is used to synthesise other fuels and chemicals:

- ammonia for fertilizers
- direct reduced iron for steelmaking
- shipping and aviation fuels

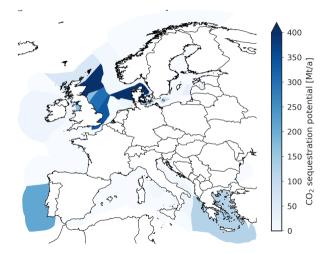
- precursor to high-value chemicals
- backup heat and power supply
- some heavy duty land transport

Transporting CO_2 to H_2 or transporting H_2 to CO_2 ?

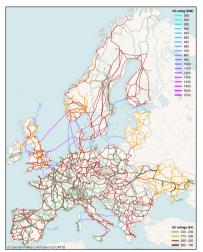


Appendix

Source: Hofmann, Tries, Neumann, Zeyen, Brown, 2024 https://arxiv.org/abs/2402.19042


Carbon management: Capture, use, transport and sequestration

- **CCS** for process emissions (for instance, in cement industry)
- **CCU** for e-synfuels and e-chemicals (in particular, shipping, aviation, plastics)
- **CDR** for unabatable and negative emissions (to offset imperfect capture rates)


Maximum sequestration potential

Electricity high-voltage grid based on OpenStreetMap (OSM)

- Dataset contains a topologically connected representation of the European high-voltage grid (220 kV to 750 kV) constructed using OpenStreetMap data
- Heuristic cleaning process was used to for lines and links where electrical parameters are incomplete, missing, or ambiguous
- Close substations within a radius of 500 m are aggregated to single buses
- Unique transformers are added for each voltage pair in a substation
- AC lines mapped using pandapower's standard line type library. In default version, nominal capacity is set to 70 % of the technical capacity to account for n-1 security approximation
- Includes all 38 European HVDC connections with their nominal rating that are commissioned as of 2024

