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Carbon capture
in scenarios

* In some scenarios up to some
2000 GtCO, CCS over the
century (median ca 500 Gt)
- Annual average CCSupto
54% of global emissions 2023
(anthropogenic non-LULUCF)

« BECCS median ca 230 GtCO,

* DACCSuptoca 1000 Gt, but
many scenarios do not include
it
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» Syngas (pre-combustion), flue
gas (post-combustion) or air
(direct air capture)

 Solvent or sorbent binds CO,
from gas

* Heated torelease pure CO,
(temperature differs between
options)
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Fig. 2: Energy and materials requirement for DACC—current status and prospects.
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How do uncertainties for
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Scenarios

CO, emissions Renewable Biomass
Emissions target target system resources

With and without fossils ) Large
Net Zero Allows fossil

o More flexible
(with imports)

More or less biomass

S-DAC and L-DAC Net Negative Fully Small More
e (-10%) renewable (only EU supply) constraining
8 scenarios
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Solvent
consumption

* Solvents degrade and need to
be replenished, but they differ
in robustness (and other
characteristics)

* Literature survey of solvent
consumption ranges gives a
wide range

* Butstill lower thanin older
literature (which was used by
Realmonte et al. and
Chatterjee & Huang)

PEI-

Silica
sorbent

Lower consumption

0.27 0.4 2.3
[kgsolvent/tCOZ]

Higher consumption

. 14
[kgsolvent/tCOZ] SHekE =t
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Energy consumption (MWh/tC0O2)

Impact on
carbon capture
energy use

5.1%
0.1%
0.3% 4.3%
. 0 . .
— » Taking energy consumption for

solvent productioninto
account

* Again, lowimpactin the
optimistic case

* S-DACupto 13% higher

Post-combustion capture L-DAC S-DAC

energy consumption
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Heat for CC operation M Electricity for CC operation
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* For post-combustion and L-
DAC: generally low effect on
energy system cost and energy
consumption,

» S-DAC sorbent uncertainty
affects energy system cost
significantly - up to 6.5%
higher cost with negative
emissions and high fossil use

» But, much less than Chatterjee

(12-20% of total energy R
consumptionvs. up to 2.8% S
here)



Solvent
consumption

Ethylene

production

NaOH: 82

Best case

results

Worst case 28 11 8,9 19
results

Current global KOH: 9 31 225 240

Potential challenges
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Material
consumption

Fig. 2: Energy and materials requirement for DACC—current status and prospects.

» How much material is needed .
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Material
consumption

* How much material is needed
if DAC is scaled up to 30
GtCO,/a?

* To compare with Realmonte et
al. and Chatterjee & Huang

Fig. 2: Energy and materials requirement for DACC—current status and prospects.
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Conclusions

» Accounting for solvent
production does not
significantly affect energy
consumption

» Uncertainties for S-DAC
sorbent replenishment
increase overall energy system
cost by upto 6.5%

* Trade-off: S-DAC has benefits
also (modular, low
temperature for regeneration)
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